
Chrononaut Documentation
Release 0.1.1

Reference Genomics, Inc.

Jan 17, 2018

Contents

1 Getting started 3

2 Using model history 5

3 Fine-grained versioning 7

4 Migrations 9

5 More details 11
5.1 Chrononaut’s API . 11

i

ii

Chrononaut Documentation, Release 0.1.1

Chrononaut is a simple package to provide versioning, change tracking, and record locking for applications using
Flask-SQLAlchemy. It currently supports Postgres as a database backend.

Contents 1

https://github.com/onecodex/chrononaut
http://flask-sqlalchemy.pocoo.org/2.1/

Chrononaut Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Getting started

Getting started with Chrononaut is a simple two step process. First, replace your FlaskSQLAlchemy database
object with a Chrononaut VersionedSQLAlchemy database connection:

from flask_sqlalchemy import SQLAlchemy
from chrononaut import VersionedSQLAlchemy

A standard, FlaskSQLAlchemy database connection without support
for automatic version tracking
db = SQLAlchemy(app)

A Chrononaut database connection with automated versioning
for any models with a `Versioned` mixin
db = VersionedSQLAlchemy(app)

After that, simply add the Versioned mixin object to your standard Flask-SQLAlchemy models:

A simple User model with versioning to support tracking of, e.g.,
email and name changes.
class User(db.Model, Versioned):

__tablename__ = 'appuser'
__chrononaut_untracked__ = ['login_count']
__chrononaut_hidden__ = ['password']

id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(80), unique=False)
email = db.Column(db.String(255), unique=True)
password = db.Column(db.Text())
...
login_count = db.Column(db.Integer())

This creates an appuser_history table that provides prior record values, along with JSON change_info and
a changed microsecond-level timestamp.

3

Chrononaut Documentation, Release 0.1.1

4 Chapter 1. Getting started

CHAPTER 2

Using model history

Chrononaut automatically generates a history table for each model into which you mixin Versioned. This history
table facilitates:

See if the user has changed their email
since they first signed up
user = User.query.first()
original_user_info = user.versions()[0]
if user.email == original_user_info.email:

print('User email matches!')
else:

print('The user has updated their email!')

Trying to access fields that are untracked or hidden raises an exception:

print(original_user_info.password) # Raises a HiddenAttributeError
print(original_user_info.login_count) # Raises an UntrackedAttributeError

For more information on fetching specific version records see Versioned.versions().

5

Chrononaut Documentation, Release 0.1.1

6 Chapter 2. Using model history

CHAPTER 3

Fine-grained versioning

By default, Chrononaut will automatically version every column in a model.

In the above example, we do not want to retain past user passwords in our history table, so we add password to
the model’s __chrononaut_hidden__ property. Changes to a user’s password will now result in a new model
version and creation of a history record, but the automatically generated appuser_history table will not have a
password field and will only note that a hidden column was changed in its change_info JSON column.

Similarly, Chrononaut’s __chrononaut_untracked__ property allows us to specify that we do not want to track
a field at all. This is useful for changes that are regularly incremented, toggled, or otherwise changed but do not need
to be tracked. A good example would be a starred property on an object or other UI state that might be persisted
to the database between application sessions.

7

Chrononaut Documentation, Release 0.1.1

8 Chapter 3. Fine-grained versioning

CHAPTER 4

Migrations

Chrononaut automatically generates a SQLAlchemy model (and corresponding table) for each Versioned mixin.
By default, this table is named tablename_history where tablename is the name of the table for the model.
A custom table name may be specified by using the __chrononaut_tablename__ property in the model.

In order to use Chrononaut, it’s important to keep your *_history tables in sync with your main tables. We
recommend using Alembic for migrations which should automatically generate the *_history tables when you first
add the Versioned mixins and subsequent updates to your models.

9

http://alembic.zzzcomputing.com/en/latest/

Chrononaut Documentation, Release 0.1.1

10 Chapter 4. Migrations

CHAPTER 5

More details

More in-depth information on Chrononaut’s API is available below:

Chrononaut’s API

Core library classes

class chrononaut.Versioned
A mixin for use with Flask-SQLAlchemy declarative models. To get started, simply add the Versioned mixin
to one of your models:

class User(db.Model, Versioned):
__tablename__ = 'appuser'
id = db.Column(db.Integer, primary_key=True)
email = db.Column(db.String(255))
...

The above will then automatically track updates to the User model and create an appuser_history
table for tracking prior versions of each record. By default, all columns are tracked. By default,
change information includes a user_id and remote_addr, which are set to automatically populate
from Flask-Login’s current_user in the _capture_change_info() method. Subclass Versioned
and override a combination of _capture_change_info(), _fetch_current_user_id(), and
_get_custom_change_info(). This change_info is stored in a JSON column in your application’s
database and has the following rough layout:

{
"user_id": "A unique user ID (string) or None",
"remote_addr": "The user IP (string) or None",
"extra": {

... # Optional extra fields
},
"hidden_cols_changed": [

11

Chrononaut Documentation, Release 0.1.1

... # A list of any hidden fields changed in the version
]

}

Note that the latter two keys will not exist if they would otherwise be empty. You may provide a list of column
names that you do not want to track using the optional __chrononaut_untracked__ field or you may
provide a list of columns you’d like to “hide” (i.e., track updates to the columns but not their values) using the
__chrononaut_hidden__ field. This can be useful for sensitive values, e.g., passwords, which you do not
want to retain indefinitely.

_capture_change_info()
Capture the change info for the new version. By default calls:

1._fetch_current_user_id() which should return a string or None; and

2._fetch_remote_addr() which should return an IP address string or None;

3._get_custom_change_info() which should return a 1-depth dict of additional keys.

These 3 methods generate a change_info and with 2+ top-level keys (user_id, remote_addr, and
any keys from _get_custom_change_info())

_fetch_current_user_id()
Return the current user ID.

Returns A unique user ID string or None if not available.

_fetch_remote_addr()
Return the IP address for the current user.

Returns An IP address string or None if not available.

_get_custom_change_info()
Optionally return additional change_info fields to be inserted into the history record. By default, this
checks for a Flask app config variable CHRONONAUT_EXTRA_CHANGE_INFO_FUNC and calls the
callable stored there (note that this may need to be wrapped with staticfunction). If not defined, returns no
additional change info. Note that Versioned may be subclassed to further refine how custom change
info is generated and propagated.

Returns A dictionary of additional change_info keys and values

diff(from_model, to=None, include_hidden=False)
Enumerate the changes from a prior history model to a later history model or the current model’s state (if
to is None).

Parameters

• from_model – A history model to diff from.

• to – A history model or None.

Returns A dict of column names and (from, to) value tuples

has_changed_since(since)
Check if there are any changes since a given time.

Parameters since – The DateTime from which to find any history records

Returns True if there have been any changes. False if not.

version_at(at)
Fetch the history model at a specific time (or None)

Parameters at – The DateTime at which to find the history record.

12 Chapter 5. More details

Chrononaut Documentation, Release 0.1.1

Returns A history model at the given point in time or the model itself if that is current.

versions(before=None, after=None, return_query=False)
Fetch the history of the given object from its history table.

Parameters

• before – Return changes only _before_ the provided DateTime.

• before – Return changes only _after_ the provided DateTime.

• return_query – Return a SQLAlchemy query instead of a list of models.

Returns List of history models for the given object (or a query object).

class chrononaut.VersionedSQLAlchemy(app=None, use_native_unicode=True, ses-
sion_options=None, metadata=None, query_class=<class
‘flask_sqlalchemy.BaseQuery’>, model_class=<class
‘flask_sqlalchemy.model.Model’>)

A subclass of the SQLAlchemy used to control a SQLAlchemy integration to a Flask application.

Two usage modes are supported (as in Flask-SQLAlchemy). One is directly binding to a Flask application:

app = Flask(__name__)
db = VersionedSQLAlchemy(app)

The other is by creating the db object and then later initializing it for the application:

db = VersionedSQLAlchemy()

Later/elsewhere
def configure_app():

app = Flask(__name__)
db.init_app(app)
return app

At its core, the VersionedSQLAlchemy class simply ensures that database session objects properly listen
to events and create version records for models with the Versioned mixin.

Helper functions

chrononaut.extra_change_info(*args, **kwds)
A context manager for appending extra change_info into Chrononaut history records for Versioned mod-
els. Supports appending changes to multiple individual objects of the same or varied classes.

Usage:

with extra_change_info(change_rationale='User request'):
user.email = 'new-email@example.com'
letter.subject = 'Welcome New User!'
db.session.commit()

Note that the db.session.commit() change needs to occur within the context manager block for additional
fields to get injected into the history table change_info JSON within an extra info field. Any number of
keyword arguments with string values are supported.

The above example yields a change_info like the following:

5.1. Chrononaut’s API 13

Chrononaut Documentation, Release 0.1.1

{
"user_id": "admin@example.com",
"remote_addr": "127.0.0.1",
"extra": {

"change_rationale": "User request"
}

}

chrononaut.append_change_info(*args, **kwds)
A context manager for appending extra change info directly onto a single model instance. Use
extra_change_info() for tracking multiple objects of the same or different classes.

Usage:

with append_change_info(user, change_rationale='User request'):
user.email = 'new-email@example.com'
db.session.commit()

Note that db.session.commit() does not need to occur within the context manager block for additional
fields to be appended. Changes take the same form as with extra_change_info().

14 Chapter 5. More details

Index

Symbols
_capture_change_info() (chrononaut.Versioned method),

12
_fetch_current_user_id() (chrononaut.Versioned method),

12
_fetch_remote_addr() (chrononaut.Versioned method), 12
_get_custom_change_info() (chrononaut.Versioned

method), 12

A
append_change_info() (in module chrononaut), 14

D
diff() (chrononaut.Versioned method), 12

E
extra_change_info() (in module chrononaut), 13

H
has_changed_since() (chrononaut.Versioned method), 12

V
version_at() (chrononaut.Versioned method), 12
Versioned (class in chrononaut), 11
VersionedSQLAlchemy (class in chrononaut), 13
versions() (chrononaut.Versioned method), 13

15

	Getting started
	Using model history
	Fine-grained versioning
	Migrations
	More details
	Chrononaut's API

