
Chrononaut Documentation
Release 0.2.2

Reference Genomics, Inc.

Jan 23, 2019

Contents

1 Getting started 3

2 Using model history 5

3 Fine-grained versioning 7

4 Migrations 9

5 More details 11
5.1 Chrononaut’s API . 11

i

ii

Chrononaut Documentation, Release 0.2.2

Chrononaut is a simple package to provide versioning, change tracking, and record locking for applications using
Flask-SQLAlchemy. It currently supports Postgres as a database backend.

Contents 1

https://github.com/onecodex/chrononaut
http://flask-sqlalchemy.pocoo.org/2.1/

Chrononaut Documentation, Release 0.2.2

2 Contents

CHAPTER 1

Getting started

Getting started with Chrononaut is a simple two step process. First, replace your FlaskSQLAlchemy database
object with a Chrononaut VersionedSQLAlchemy database connection:

from flask_sqlalchemy import SQLAlchemy
from chrononaut import VersionedSQLAlchemy

A standard, FlaskSQLAlchemy database connection without support
for automatic version tracking
db = SQLAlchemy(app)

A Chrononaut database connection with automated versioning
for any models with a `Versioned` mixin
db = VersionedSQLAlchemy(app)

After that, simply add the Versioned mixin object to your standard Flask-SQLAlchemy models:

A simple User model with versioning to support tracking of, e.g.,
email and name changes.
class User(db.Model, Versioned):

__tablename__ = 'appuser'
__chrononaut_untracked__ = ['login_count']
__chrononaut_hidden__ = ['password']

id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(80), unique=False)
email = db.Column(db.String(255), unique=True)
password = db.Column(db.Text())
...
login_count = db.Column(db.Integer())

This creates an appuser_history table that provides prior record values, along with JSON change_info and
a changed microsecond-level timestamp.

3

Chrononaut Documentation, Release 0.2.2

4 Chapter 1. Getting started

CHAPTER 2

Using model history

Chrononaut automatically generates a history table for each model into which you mixin Versioned. This history
table facilitates:

See if the user has changed their email
since they first signed up
user = User.query.first()
original_user_info = user.versions()[0]
if user.email == original_user_info.email:

print('User email matches!')
else:

print('The user has updated their email!')

Trying to access fields that are untracked or hidden raises an exception:

print(original_user_info.password) # Raises a HiddenAttributeError
print(original_user_info.login_count) # Raises an UntrackedAttributeError

For more information on fetching specific version records see Versioned.versions().

5

Chrononaut Documentation, Release 0.2.2

6 Chapter 2. Using model history

CHAPTER 3

Fine-grained versioning

By default, Chrononaut will automatically version every column in a model.

In the above example, we do not want to retain past user passwords in our history table, so we add password to
the model’s __chrononaut_hidden__ property. Changes to a user’s password will now result in a new model
version and creation of a history record, but the automatically generated appuser_history table will not have a
password field and will only note that a hidden column was changed in its change_info JSON column.

Similarly, Chrononaut’s __chrononaut_untracked__ property allows us to specify that we do not want to track
a field at all. This is useful for changes that are regularly incremented, toggled, or otherwise changed but do not need
to be tracked. A good example would be a starred property on an object or other UI state that might be persisted
to the database between application sessions.

7

Chrononaut Documentation, Release 0.2.2

8 Chapter 3. Fine-grained versioning

CHAPTER 4

Migrations

Chrononaut automatically generates a SQLAlchemy model (and corresponding table) for each Versioned mixin.
By default, this table is named tablename_history where tablename is the name of the table for the model.
A custom table name may be specified by using the __chrononaut_tablename__ property in the model.

In order to use Chrononaut, it’s important to keep your *_history tables in sync with your main tables. We
recommend using Alembic for migrations which should automatically generate the *_history tables when you first
add the Versioned mixins and subsequent updates to your models.

9

http://alembic.zzzcomputing.com/en/latest/

Chrononaut Documentation, Release 0.2.2

10 Chapter 4. Migrations

CHAPTER 5

More details

More in-depth information on Chrononaut’s API is available below:

Chrononaut’s API

Core library classes

class chrononaut.Versioned
A mixin for use with Flask-SQLAlchemy declarative models. To get started, simply add the Versioned mixin
to one of your models:

class User(db.Model, Versioned):
__tablename__ = 'appuser'
id = db.Column(db.Integer, primary_key=True)
email = db.Column(db.String(255))
...

The above will then automatically track updates to the User model and create an appuser_history
table for tracking prior versions of each record. By default, all columns are tracked. By default,
change information includes a user_id and remote_addr, which are set to automatically populate
from Flask-Login’s current_user in the _capture_change_info() method. Subclass Versioned
and override a combination of _capture_change_info(), _fetch_current_user_id(), and
_get_custom_change_info(). This change_info is stored in a JSON column in your application’s
database and has the following rough layout:

{
"user_id": "A unique user ID (string) or None",
"remote_addr": "The user IP (string) or None",
"extra": {

... # Optional extra fields
},
"hidden_cols_changed": [

11

Chrononaut Documentation, Release 0.2.2

... # A list of any hidden fields changed in the version
]

}

Note that the latter two keys will not exist if they would otherwise be empty. You may provide a list of column
names that you do not want to track using the optional __chrononaut_untracked__ field or you may
provide a list of columns you’d like to “hide” (i.e., track updates to the columns but not their values) using the
__chrononaut_hidden__ field. This can be useful for sensitive values, e.g., passwords, which you do not
want to retain indefinitely.

diff(from_model, to=None, include_hidden=False)
Enumerate the changes from a prior history model to a later history model or the current model’s state (if
to is None).

Parameters

• from_model – A history model to diff from.

• to – A history model or None.

Returns A dict of column names and (from, to) value tuples

has_changed_since(since)
Check if there are any changes since a given time.

Parameters since – The DateTime from which to find any history records

Returns True if there have been any changes. False if not.

previous_version()
Fetch the previous version of this model (or None)

Returns A history model, or None if no history exists

version_at(at)
Fetch the history model at a specific time (or None)

Parameters at – The DateTime at which to find the history record.

Returns A history model at the given point in time or the model itself if that is current.

versions(before=None, after=None, return_query=False)
Fetch the history of the given object from its history table.

Parameters

• before – Return changes only _before_ the provided DateTime.

• before – Return changes only _after_ the provided DateTime.

• return_query – Return a SQLAlchemy query instead of a list of models.

Returns List of history models for the given object (or a query object).

class chrononaut.VersionedSQLAlchemy(app=None, use_native_unicode=True, ses-
sion_options=None, metadata=None, query_class=<class
‘flask_sqlalchemy.BaseQuery’>, model_class=<class
‘flask_sqlalchemy.model.Model’>)

A subclass of the SQLAlchemy used to control a SQLAlchemy integration to a Flask application.

Two usage modes are supported (as in Flask-SQLAlchemy). One is directly binding to a Flask application:

app = Flask(__name__)
db = VersionedSQLAlchemy(app)

12 Chapter 5. More details

Chrononaut Documentation, Release 0.2.2

The other is by creating the db object and then later initializing it for the application:

db = VersionedSQLAlchemy()

Later/elsewhere
def configure_app():

app = Flask(__name__)
db.init_app(app)
return app

At its core, the VersionedSQLAlchemy class simply ensures that database session objects properly listen
to events and create version records for models with the Versioned mixin.

class chrononaut.RecordChanges
A mixin that records change information in a change_info JSON column and a changed timezone-aware
datetime column. Creates change records in the same format as the Versioned mixin, but stores them directly
on the model vs. in a separate history table.

Helper functions

chrononaut.extra_change_info(*args, **kwds)
A context manager for appending extra change_info into Chrononaut history records for Versioned mod-
els. Supports appending changes to multiple individual objects of the same or varied classes.

Usage:

with extra_change_info(change_rationale='User request'):
user.email = 'new-email@example.com'
letter.subject = 'Welcome New User!'
db.session.commit()

Note that the db.session.commit() change needs to occur within the context manager block for additional
fields to get injected into the history table change_info JSON within an extra info field. Any number of
keyword arguments with string values are supported.

The above example yields a change_info like the following:

{
"user_id": "admin@example.com",
"remote_addr": "127.0.0.1",
"extra": {

"change_rationale": "User request"
}

}

chrononaut.append_change_info(*args, **kwds)
A context manager for appending extra change info directly onto a single model instance. Use
extra_change_info() for tracking multiple objects of the same or different classes.

Usage:

with append_change_info(user, change_rationale='User request'):
user.email = 'new-email@example.com'
db.session.commit()

Note that db.session.commit() does not need to occur within the context manager block for additional
fields to be appended. Changes take the same form as with extra_change_info().

5.1. Chrononaut’s API 13

Chrononaut Documentation, Release 0.2.2

chrononaut.rationale(*args, **kwds)
A simplified version of the extra_change_info() context manager that accepts only a rationale string and
stores it in the extra change info.

Usage:

with rationale('Updating per user request, see GH #1732'):
user.email = 'updated@example.com'
db.session.commit()

This would yield a change_info like the following:

{
"user_id": "admin@example.com",
"remote_addr": "127.0.0.1",
"extra": {

"rationale": "Updating per user request, see GH #1732"
}

}

14 Chapter 5. More details

Index

A
append_change_info() (in module chrononaut), 13

D
diff() (chrononaut.Versioned method), 12

E
extra_change_info() (in module chrononaut), 13

H
has_changed_since() (chrononaut.Versioned method), 12

P
previous_version() (chrononaut.Versioned method), 12

R
rationale() (in module chrononaut), 13
RecordChanges (class in chrononaut), 13

V
version_at() (chrononaut.Versioned method), 12
Versioned (class in chrononaut), 11
VersionedSQLAlchemy (class in chrononaut), 12
versions() (chrononaut.Versioned method), 12

15

	Getting started
	Using model history
	Fine-grained versioning
	Migrations
	More details
	Chrononaut's API

